Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(19): e2311679, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38243856

RESUMO

Inspired by the superglue fuming method for fingerprint collection, this study developed a novel interfacial-fuming-induced surface instability process to generate wrinkled patterns on polymeric substrates. High-electronegativity groups are introduced on the substrate surface to initiate the polymerization of monomer vapors, such as ethyl cyanoacrylate, which results in the formation of a stiff poly(ethyl cyanoacrylate) capping layer. Moreover, interfacial polymerization resulted in the covalent bonding of the substrate, which led to the volumetric shrinkage of the composite and the accumulation of compressive strain. This process ultimately resulted in the development and stabilization of wrinkled surface morphologies. The authors systematically examined parameters such as the modulus of the epoxy substrate, prestrain, the flow rate of fuming, and operating temperature. The aforementioned technique can be easily applied to architectures with complex outer morphologies and inner surfaces, thereby enabling the construction of surface patterns under ambient conditions without vacuum limitations or precise process control. This study is the first to combine fuming-induced interfacial polymerization with surface instability to create robust wrinkles. The proposed method enables the fabrication of intricate microwrinkled patterns and has considerable potential for use in various practical applications, including microfluidics, optical components, bioinspired adhesive devices, and interfacial engineering.

2.
ACS Appl Mater Interfaces ; 15(32): 38975-38985, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37478376

RESUMO

In this study, a morphological diagram was constructed for quantitatively predicting various modes of surface instabilities caused by the dynamic interfacial release of strain in initially flat bilayer composites comprising an elastomer and a capping layer. Theory, experiment, and simulation were combined to produce the diagram, which enables systematic generation of the following instability patterns: wrinkle, fold, period-double, delamination, and coexisting patterns. The pattern that forms is most strongly affected by three experimental parameters: the elastic modulus of the elastomer, the elastic modulus of the capping layer, and the thickness of the capping layer. The morphological diagram offers understanding of the formation of complex patterns and development of their applications. Critically, the wrinkle alignment can be well controlled by changing the direction of the interfacial release to enable the creation of centimeter-sized and highly ordered lamellar wrinkled patterns with a single orientation on a soft elastomer without the need for costly high-vacuum instruments or complex fabrication processes. The method and diagram have great potential for broad use in many practical applications ranging from flexible electronic devices to smart windows.

3.
Nanomaterials (Basel) ; 11(9)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34578713

RESUMO

Reversible-deactivation radical polymerization (RDRP) serves as a powerful tool nowadays for the preparations of unique linear and non-linear macromolecules. In this study, enhanced spin capturing polymerizations (ESCPs) of styrene (St) and tert-butyl acrylate (tBA) monomers were, respectively, conducted in the presence of difunctional (1Z,1'Z)-1,1'-(1,4-phenylene) bis (N-tert-butylmethanimine oxide) (PBBN) nitrone. Four-arm (PSt)4 and (PtBA)4 star macroinitiators (MIs) can be afforded. By correspondingly switching the second monomer (i.e., tBA and St), miktoarm star copolymers (µ-stars) of (PSt)2-µ-(PtBA-b-PSt)2 and (PtBA)2-µ-(PSt-b-PtBA)2) were thus obtained. We further conducted hydrolysis of the PtBA segments to PAA (i.e., poly(acrylic acid)) in µ-stars to afford amphiphilic µ-stars of (PSt)2-µ-(PAA-b-PSt)2 and (PAA)2-µ-(PSt-b-PAA)2. We investigated each polymerization step and characterized the obtained two sets of "sequence-isomeric" µ-stars by FT-IR, 1H NMR, differential scanning calorimeter (DSC), and thermogravimetric analysis (TGA). Interestingly, we identified their physical property differences in the case of amphiphilic µ-stars by water contact angle (WCA) and atomic force microscopy (AFM) measurements. We thus proposed two microstructures caused by the difference of polymer chain sequences. Through this polymerization transformation (T) approach (i.e., ESCP-T-NMP), we demonstrated an interesting and facile strategy for the preparations of µ-stars with adjustable/switchable interior and exterior polymer structures toward the preparations of various nanomaterials.

4.
ACS Appl Mater Interfaces ; 12(19): 22365-22377, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32237732

RESUMO

Robust and inexpensive dry adhesives have a great potential in multitudinous industrial applications. However, to date, the fabrication of dry adhesives, prepared using high aspect ratio structures in general, requires specific equipment and time-consuming processes, which limit their practicable utilization. Inspired from human fingerprints, in this study, we created durable single-component elastomer surfaces with symmetric and multiple concentric-shaped wrinkled patterns that exhibit isotropic dry adhesion capabilities. The dynamic interfacial release-induced surface wrinkling property of a rigid degradable polymeric capping layer [i.e., poly(l-lactide) (PLLA)] was exploited on a soft elastomer substrate [i.e., polydimethylsiloxane (PDMS)] to spontaneously form wrinkled PLLA/PDMS bilayer composites. After conducting a two-step thermal curing process on the composite and hydrolysis of the PLLA capping layer, a single-component microwrinkled PDMS surface with a large area and symmetric patterns could be generated. The patterns show flexible, durable, and isotropic dry adhesion capabilities that could be controlled by tuning their geometrical parameters (wrinkle wavelengths and amplitudes) and elastic modulus. In particular, the formation of symmetrically wrinkled patterns without using expensive lithography for patterning and costly material precursors is an advantage and could be extended to other industrial applications, such as damage-free transportation, biomimetic climbing robots, and biocompatible medical patches.

5.
ACS Appl Mater Interfaces ; 11(43): 40875-40885, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31588736

RESUMO

Inspired by complex multifunctional leaves, in this study, we created robust hierarchically wrinkled nanoporous polytetrafluoroethene (PTFE) surfaces that exhibit superhydrophobic properties by combination of PTFE micellization and spontaneous surface wrinkling on a commercially available thermoretractable polystyrene (PS) sheet. A PTFE dispersion was coated onto the PS sheet, followed by thermal treatment to remove the surfactants surrounding the PTFE particles, and surface wrinkling was induced through a dynamic thermal contraction process. Thermally induced contraction from the PS sheet provided the driving force for developing and stabilizing micrometer-sized wrinkle formation, whereas the nanometer-sized PTFE particle aggregation formed a rigid nanoporous film, providing its intrinsic hydrophobic character. By combining the hierarchical interfacial structure and chemical composition, hierarchically wrinkled nanoporous PTFE surfaces were fabricated, which exhibited extremely high water repellence (water contact angle of ∼167°) and a water rolling-off angle lower than 5°. The wrinkled patterns could intimately bind the nanoporous PTFE layer through enhanced adhesion from their curved surface and viscous liquid surfactants, making these surfaces mechanically robust and offering potentially extendable alternatives with self-cleaning, antifouling, and drag-reducing properties.

6.
ACS Appl Mater Interfaces ; 11(26): 23741-23749, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31199114

RESUMO

Orientated wrinkle patterns with controlled microarchitectures are highly attractive because of their potential and broad application in technologies ranging from flexible electronic devices to smart windows. Here, we demonstrate a macroscopic, geometry-dominated strategy to fabricate symmetric microwrinkles with precisely controllable pattern dimensions and orientations through a dynamic interfacial release process. The release-induced approach is based on the release of multilayer elastomer composites from polymeric sacrificial layers in solutions combined with crosslinking-induced contraction of the elastomer substrates. Crosslinking-induced contraction provides the driving force for developing and stabilizing surface wrinkle formation, whereas the polymeric sacrificial layer provides a mild and simultaneous release process to form orientated wrinkles through kinetic control of local strain development. The macroscopic shape of the composite controls release kinetics, hence strain history, leading to the generation of photonic reflective surfaces. Moreover, stable wrinkles fabricated from various materials including metals, ceramics, and carbons can be achieved. This versatile, mold-free, and cost-effective platform technology demonstrates how global strain distributions can be harnessed through kinetics to drive local pattern development.

7.
Langmuir ; 32(25): 6419-28, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27245380

RESUMO

Nanoporous epoxy with gyroid texture is fabricated by using a nanoporous polymer with gyroid-forming nanochannels as a template for polymerization of epoxy. The nanoporous polymer template is obtained from the self-assembly of degradable block copolymer, polystyrene-b-poly(l-lactide) (PS-PLLA), followed by hydrolysis of PLLA blocks. Templated polymerization can be conducted under ambient conditions to create well-defined, bicontinuous epoxy networks in a PS matrix. By taking advantage of multistep curing of epoxy, well-ordered robust nanoporous epoxy can be obtained after removal of PS template, giving robust porous materials. The through-hole nanoporous epoxy in the film state can be used as a coated layer to enhance the adsorbability for both lysozyme and bovine serum albumin.


Assuntos
Nanoporos , Polímeros , Proteínas/farmacocinética , Resinas Epóxi , Poliestirenos , Porosidade
8.
Chem Soc Rev ; 44(7): 1974-2018, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25622806

RESUMO

The design of nanostructured materials and their corresponding morphologies has attracted intense attention because of their effectiveness in tuning electronic, optical, magnetic, and catalytic properties, as well as mechanical properties. Although many technologies have been explored to fabricate nanostructured materials, templated synthesis is one of the most important approaches to fabricate nanostructured materials with precisely controlled structures and morphologies from their constituent components. In this review article, we aim to highlight the use of the self-assembly of block copolymers as an emerging and powerful tool to fabricate well-defined nanomaterials with precise control over the structural dimensions and shape, as well as over the composition and corresponding spatial arrangement. After providing a brief introduction to the synthesis of regular porous materials, including silica- and carbon-based mesoporous materials, the review focuses on the fabrication of well-ordered nanoporous polymers from the selfassembly of degradable block copolymers, in particular with gyroid-forming network morphologies, as templates for the syntheses of various materials with different entities. We highlight the principles of different templated syntheses, from the fundamentals to their practical uses in the fabrication of nanohybrids and nanoporous materials; moreover, we provide an introduction to templates, precursors, solvents, and processing. Finally, some recent examples using block copolymer structure-directed nanomaterials for applications, such as solar cells, catalysis, and drug delivery, are presented. In particular, by taking advantage of the "well-ordered" structural characteristics of the gyroid texture, the properties and applications of 3D regular nanostructures, such as the photonic behavior and optical properties of gyroid-forming nanostructures, as well as of gyroid-forming metamaterials, will be emphasized. Special attention is also given to present new developments and future perspectives in this field.

9.
Adv Mater ; 26(20): 3225-9, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24677175

RESUMO

A simple method for the preparation of nanomaterials with new functionality by physical displacement of a network phase is suggested, giving a change in space group symmetry and hence properties. A double gyroid structure made by the self-assembly of block copolymers is used as a model system for the demonstration of shifting networks to achieve single gyroid-like scattering properties. Free-standing single gyroid-like network materials can be fabricated to give nanophotonic properties, similar to the photonic properties of a butterfly wing structure.

10.
Adv Mater ; 25(12): 1780-6, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23359456

RESUMO

Well-defined multibranched gold (Au) in polymers, both as bulk or continuous thin films, can be fabricated by using a nanoporous polymer with gyroid nanochannels as a template. The nanoporous polymer template is obtained from the self-assembly of a degradable block copolymer, polystyrene-b-poly (L-lactide) (PS-PLLA), followed by the hydrolysis of PLLA blocks. Templated seeding growth approach can be conducted to create precisely controlled nanostructured Au giving remarkable surface plasmon resonance (SPR) in (branched Au with uniform distribution in PS matrix) near-infrared (NIR) region. Controlled growth conditions allow the fabrication of three-dimensionally ordered nanoporous Au particles that possess NIR SPR. Double gyroid Au with dual networks in the PS matrix is obtained after completing the seeding growth at which the NIR SPR diminishes resulting from the reduction in the density of nanostructured edge.


Assuntos
Ouro/química , Raios Infravermelhos , Nanotecnologia/métodos , Ressonância de Plasmônio de Superfície , Nanopartículas Metálicas/química , Modelos Moleculares , Conformação Molecular , Porosidade
11.
Langmuir ; 28(22): 8518-29, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22530553

RESUMO

Mesoporous polymers with gyroid nanochannels can be fabricated from the self-assembly of degradable block copolymer, polystyrene-b-poly(L-lactide) (PS-PLLA), followed by hydrolysis of PLLA block. Well-defined polymer/ceramic nanohybrid materials with inorganic gyroid nanostructures in a PS matrix can be obtained by using the mesoporous PS as a template for sol-gel reaction. Titanium tetraisopropoxide (TTIP) is used as a precursor to give a model system for the fabrication of metal oxide nanostructures from reactive transition metal alkoxides. By controlling the rates of capillary-driven pore filling and sol-gel reaction, the templated synthesis can be well-developed. Also, by taking advantage of calcination, bicontinuous TiO(2) with controlled crystalline phase (i.e., anatase phase) can be fabricated after removal of the PS template and crystallization of TiO(2) by calcination leading to high photocatalytic efficiency. This new approach provides an easy way to fabricate high-surface-area and high-porosity ceramics with self-supporting structure and controlled crystalline phase for practical applications. As a result, a platform technology to fabricate precisely controlled polymer/ceramic nanohybrids and mesoporous ceramic materials can be established.

13.
Nano Lett ; 10(12): 4994-5000, 2010 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-21047065

RESUMO

Nanoporous polymers with gyroid nanochannels can be fabricated from the self-assembly of degradable block copolymer, polystyrene-b-poly(l-lactide) (PS-PLLA), followed by the hydrolysis of PLLA blocks. A well-defined nanohybrid material with SiO2 gyroid nanostructure in a PS matrix can be obtained using the nanoporous PS as a template for sol-gel reaction. After subsequent UV degradation of the PS matrix, a highly porous inorganic gyroid network remains, yielding a single-component material with an exceptionally low refractive index (as low as 1.1).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...